《正比例》的教学设计 正比例的优秀教案

《正比例》的教学设计 正比例的优秀教案

《正比例》的教学设计1

【教学目标】

1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

【教学重难点】

重点:

成正比例的量的特征及其断方法。

难点:

理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

【教学过程】

一、四顾旧知,复习铺垫

商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

学生独立完成后师提问:你们是怎样比较的?

生:我先求出每种袜子的单价,再进行比较。

师:你是根据哪个数量关系式进行计算的?

生:因为总价=单价×数量,所以单价=总价÷数量。

师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

二、引导探索,学习新知

1、教学例1,学习正比例的意义。

(1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

(2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

2、计算表中的数据,理解正比例的意义。

(1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:=3.5,每一组数据的比值一定。

(2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

(3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

(4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

3、列举并讨论成正比例的量。

(1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

(2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

两种量中相对应的两个数的比值一定,这是关键。

4、认识正比例图象。(课件出示例1的表格及正比例图象)

(1)观察表格和图象,你发现了什么?

(2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

无论怎样延长,得到的都是直线。

(3)从正比例图象中,你知道了什么?

生1:可以由一个量的值直接找到对应的另一个量的值。

生2:可以直观地看到成正比例的量的变化情况。

(4)利用正比例图象解决问题。

不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?

小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。

三、课堂练习:

1、P46“做一做”

2、练习九第1、3~7题

《正比例》的教学设计2

教学要求:

1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学过程:

一、复习铺垫

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、引入新课

我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

二、教学新课

1、教学例1。

出示例1、让学生计算,在课本上填表。

让学生观察表里两种量变化的数据,思考。

(1)表里有哪两种数量,这两种数量是怎样变化的?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论。

提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

想一想,这个式子表示的是什么意思?

2、教学例2

出示例2和想一想

要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

比值1.6是什么数量,你能用数量关系式表示出来吗?

谁来说说这个式子表示的意思?

3、概括正比例的`意义。

像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

4、具体认识

(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

例2里的两种量是不是成正比例的量?为什么?

(2)做练习八第1题。

5、教学例3

出示例3,让学生思考/

提问:怎样判断是不是成正比例?

请同学们看一看例3,书上怎样判断的,我们说得对不对。

强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

1、做练一练第1题。

指名学生口答,说明理由。

2、做练一练第2题。

指名口答,并要求说明理由。

3、做练习八第2题(小黑板)

让学生把成正比例关系的先勾出来。

指名口答,选择几题让学生说一说怎样想的?

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业。

《正比例》的教学设计3

【教学内容】

正比例

【教学目标】

使学生理解正比例的意义,会正确判断成正比例的量。

【重点难点】

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

【教学准备】

投影仪。

【复习导入】

1、复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?

板书:=速度。

②已知总价和数量,怎样求单价?

板书:=单价。

③已知工作总量和工作时间,怎样求工作效率?

板书:=工作效率。

2、引入课题:

这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

【新课讲授】

1、教学例1。

教师用投影仪出示例1的图和表格。

学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2、教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是=速度(一定)。

教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

3、归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。

要求学生把握三个要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三:两个量的比值一定。

4、用字母表示正比例的关系。

教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示:(一定)

5、教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

《正比例》的教学设计4

教学内容

教科书第54页例3,练习十二5,6,7题。

教学目标

1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

教学重、难点

运用正比例知识解决简单的实际问题。

教学准备

教具:多媒体课件。

学具:作业本,数学书。

教学过程

一、复习引入

1.判断下面各题中的两种量是不是成正比例?为什么?

(1)飞机飞行的速度一定,飞行的时间和航程。

(2)梯形的上底和下底不变,梯形的面积和高。

(3)一个加数一定,和与另一个加数。

(4)如果y=3x,y和x。

2.揭示课题

教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习”正比例的应用”。

二、合作交流,探索新知

1.用课件出示例3

教师:这幅图告诉我们一个什么事情?需要解决什么问题?

教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

2.全班交流解答方法

指导学生思考出:

(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

3.尝试用正比例知识解答

如果有学生想出用正比例方法解答,教师可以直接问:”你为什么要这样解?”让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

(1)题中有哪两种相关联的量?

(2)题中什么量是不变的?一定的?

(3)题中这两种相关联的量是什么关系?

引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

随学生的回答,教师可同步板书:

教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

教师:同学们会计算吗?把这个比例式计算出来。

学生解答。

教师:解答得对不对呢?你准备怎样验算?

学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

三、课堂活动

1.出示教科书第49页的例1图和补充条件

竹竿长(m)26…

影子长(m)39…

教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

学生独立思考解答,讨论交流。

2.小结方法

教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

(1)设所求问题为x。

(2)判断题中的两个相关联的量是否成正比例关系。

(3)列出比例式。

(4)解比例,验算,写答语。

四、练习应用

完成练习十二的5,6,7题。

五、课堂小结

这节课我们学习了什么知识?你有什么收获?

《正比例》的教学设计的分享到这里就结束了,希望可以帮助到你。

本内容由用户 ijianli 上传分享,若内容存在侵权,请联系我们(点这里联系)处理。如若转载,请注明出处:https://www.lekantv.com/w/33632.html

Like (0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注