小学《正比例》的教学设计 小学数学正比例教学设计

小学《正比例》的教学设计 小学数学正比例教学设计

小学《正比例》的教学设计 篇1

教学要求:

1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学过程:

一、复习铺垫

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、引入新课

我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

二、教学新课

1、教学例1。

出示例1。让学生计算,在课本上填表。

让学生观察表里两种量变化的数据,思考。

(1)表里有哪两种数量,这两种数量是怎样变化的?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论。

提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

想一想,这个式子表示的是什么意思?

2、教学例2

出示例2和想一想

要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

比值1.6是什么数量,你能用数量关系式表示出来吗?

谁来说说这个式子表示的意思?

3、概括正比例的意义。

像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

4、具体认识

(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

例2里的两种量是不是成正比例的量?为什么?

(2)做练习八第1题。

5、教学例3

出示例3,让学生思考

提问:怎样判断是不是成正比例?

请同学们看一看例3,书上怎样判断的,我们说得对不对。

强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

1、做练一练第1题。

指名学生口答,说明理由。

2、做练一练第2题。

指名口答,并要求说明理由。

3、做练习八第2题(小黑板)

让学生把成正比例关系的先勾出来。

指名口答,选择几题让学生说一说怎样想的?

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业。

小学《正比例》的教学设计 篇2

【教学内容】

正比例

【教学目标】

使学生理解正比例的意义,会正确判断成正比例的量。

【重点难点】

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

【教学准备】

投影仪。

【复习导入】

1、复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?

板书: =速度。

②已知总价和数量,怎样求单价?

板书: =单价。

③已知工作总量和工作时间,怎样求工作效率?

板书: =工作效率。

2、引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

【新课讲授】

1、教学例1。

教师用投影仪出示例1的图和表格。

学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2、教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。

教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

3、归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。

要求学生把握三个要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三:两个量的比值一定。

4、用字母表示正比例的关系。

教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

5、教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

【课堂作业】

完成教材第46页的“做一做”(1)~(3)。

答案:

(1) 比值表示每小时行驶多少km。

(2)成正比例。理由:路程随着时间的变化而变化。

①时间增加,路程也增加,时间减少,路程也随着减少;

②路程和时间的比值(速度)一定。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

小学《正比例》的教学设计 篇3

教学内容

教科书第54页例3,练习十二5,6,7题。

教学目标

1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

教学重、难点

运用正比例知识解决简单的实际问题。

教学准备

教具:多媒体课件。

学具:作业本,数学书。

教学过程

一、复习引入

1.判断下面各题中的两种量是不是成正比例?为什么?

(1)飞机飞行的速度一定,飞行的时间和航程。

(2)梯形的上底和下底不变,梯形的面积和高。

(3)一个加数一定,和与另一个加数。

(4)如果y=3x,y和x。

2.揭示课题

教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

二、合作交流,探索新知

1.用课件出示例3

教师:这幅图告诉我们一个什么事情?需要解决什么问题?

教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

2.全班交流解答方法

指导学生思考出:

(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

3.尝试用正比例知识解答

如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

(1)题中有哪两种相关联的量?

(2)题中什么量是不变的?一定的?

(3)题中这两种相关联的量是什么关系?

引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

随学生的回答,教师可同步板书:

教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

教师:同学们会计算吗?把这个比例式计算出来。

学生解答。

教师:解答得对不对呢?你准备怎样验算?

学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

三、课堂活动

1.出示教科书第49页的例1图和补充条件

竹竿长(m)26…

影子长(m)39…

教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

学生独立思考解答,讨论交流。

2.小结方法

教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

(1)设所求问题为x。

(2)判断题中的两个相关联的量是否成正比例关系。

(3)列出比例式。

(4)解比例,验算,写答语。

四、练习应用

完成练习十二的5,6,7题。

五、课堂小结

这节课我们学习了什么知识?你有什么收获?

小学《正比例》的教学设计 篇4

一、教学目标

(1)知识目标:能根据正比例函数的图像,观察归纳出函数的性质;并会简单应用。

(2)能力目标:逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想;

(3)情感目标:激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。

二、教学的重点和难点

教学重点:正比例函数的性质及其应用。

教学难点:发现正比例函数的性质

三、教学方法与学法指导教学方法:

引导发现法和直观演示法,本节课的难点是发现正比例函数的性质,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动(画图)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。

学法指导:引导学生学会观察、归纳的学习方法。

四、教具准备

电脑PPT,洋葱学院电脑版

五、教学过程:

(一)温故知新,引入课题

温故:正比例函数的图像是什么?

答:正比例函数图像是经过原点(0,0)和点(1,k)的一条直线

(二):知新:

在两个直角坐标系内,分别画出下列每组函数的图象像:y=xy=3xy=4xy=y=x②y=-xy=-3xy=-4xy=-y=-x

引导学生观察图像,看看每组直线分布的特征先让学生在坐标纸上画出上述函数的图象,之后利用洋葱学院播放《正比例函数的性质》,以动态的演示画出函数图象,吸引学生的学习兴趣,让他们能查漏补缺,找出自己所画的图象与视频中的图象有什么不同?

观察图像,思考问题:

1.图像经过的象限与k的取值有何联系?不够明确。图像经过的象限与k的取值(特别是符号)有何联系?

2.对其中的某一个正比例函数图像(例如y=3x),当x增大时,函数值y怎样变化?x减小呢?是不是要提出减小?请斟酌。

3.你从中得出什么规律?

第一个问题:图像经过的象限与k的取值有何联系?

估计生:发现第一组的五条直线都经过第一象限和第三象限;而第二组的五条直线都经过第二和第四象限。

师:从比例系数来看呢,函数的比例系数和他们的图像分布有什么联系?用词前后宜一致

估计生:第一组k>0,而第二组k<0。

师:很好,谁能把他们联系一下?

估计生:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。

师:那么是不是对于所有的正比例函数的图像都有:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限呢?【电脑演示:任意正比例函数的图像,当在一、三象限运动时,它的解析式中的k的值无论怎样变化都是大于零的,反之,图像在二、四象限运动时,k的值都小于零的。】(这个演示过程可以登录xx这个网址,进行演示,让学生更加直观的观察到k的正负对函数图象的影响)

下面由老师来证明这个性质:(由观察猜想到逻辑证明)

板书:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。

证明:当k>0时,若x>0,则kx>0,即y>0∴点(x,y)在第一象限

若x<0,则kx<0,即y<0∴点(x,y)在第三象限

当x=0时,则kx=0,即y=0∴点(x,y)即原点。

即函数图像上所有的点(原点除外)都在一、三象限内,所以图像经过一、三象限。同理,当k<0时,亦可证明函数图像经过二、四象限。

我们看到:当k>0时,函数图像的走向很像汉字笔画里的“提”,当k<0时,走向是“捺”。这样更形象,容易记忆。

PPT展示正比例函数的性质:当k>0时,函数图像经过第一、三象限;当k<0时,函数图像经过第二、四象限。

师:现在我们做个小练习,由正比例函数解析式(根据k的正负),来判断其函数图像的走向。

y=-xy=xy=xy=-xy=(a2+1)x(其中a是常数)y=(-a2-1)x(其中a是常数)

鼓励学生踊跃抢答。

反过来,由函数图象所在的象限,请你说出一个满足条件的正比例函数解析式。好,我们来看下一个问题,(电脑重现第二问题:2、对其中的某一个正比例函数图像,当x增大时,函数值y怎样变化?x减小呢?)播放洋葱视频。

板书:当k>0时,自变量x逐渐增大时,函数值y也在逐渐增大;(即“提”的走向)当k<0时,自变量x逐渐增大时,函数值y反而减小。(即“捺”的走向)

师:小练习:由函数解析式,请你说出它的变化情况:y=3xy=-xy=xy=-y=(a2+1)x(其中a是常数)y=(-a2-1)x(其中a是常数)

鼓励学生踊跃抢答。

第三个问题:你从中得出什么规律?

归纳总结(由学生回答)正比例函数y=kx(k≠0)的性质:

当k>0时,函数图像经过第一、三象限;自变量x逐渐增大时,函数值y也在逐渐增大;(也就是“提”的走向)

当k<0时,函数图像经过第二、四象限;自变量x逐渐增大时,函数值y反而减小。(也就是“捺”的走向)

归纳为一句话,正比例函数图象的性质归根结底看k的符号。

即:k>0提(一、三,增大);

k<0捺(二、四,减小)

(三)应用

1、正比例函数的解析式是___________,它的图像一定经过___________。

2、y=-的图像经过第___________象限。

3、已知ab<0,则函数y=x的图象经过___________象限。

4、已知正比例函数y=(2a+1)x,若y的值随x的增大而减小,求a的取值范围。

5、当m为何值时,y=mxm2-3是正比例函数,且y随x的增大而增大。

思考题:

①已知正比例函数y=(m+1)xm2+1,那么它的图象经过哪些象限。

②分别说明下列各正比例函数,当m为何值时,y随x的增大而增大,或y随x的增大而减小?

a、y=(m2+1)x

b、y=m2x

c、y=(m+1)x

(四)小结这节课让我们知道了……

以表格形式小结,可以整理知识点,形成网络.有利于学生的记忆和内化,让学生理清知识脉络(先播放视频,之后PPT总结本节课的重点)。

(五)作业89页练习题

(六)课后反思

1.成功之处:本节课的重点是正比例函数的性质及其应用。难点是发现正比例函数的性质,通过教师的引导,洋葱视频的引导,启发调动学生的积极性,让学生自主的去分析发现函数的性质。教师的主导作用与学生主体地位达到了统一。使本节课的重点得到了突出,难点得到了突破;对学生学习中的情况进行了指导,作出了反馈;培养了学生利用数形结合的思想方法解决问题的能力;本节课的教学注重由传授单一的知识技能,转向为学生“自主探索发现总结规律”,使学生对新的知识与数学思想方法更容易理解和掌握。

2.不足之处:

(1)在探索正比例函数性质时,没有预估到学生画函数图象费时太长,导致后面的教学过程比较紧张。

(2)在应用新知这一环节中对学生习题的反馈情况了解的不够全面。

(3)为激发学生自主学习的兴趣,教师的课堂语言应精炼。

3、改进措施:

(1)要充分的相信学生总结规律的能力。在学生总结规律过后给予肯定,不必加以过多的语言进行重复,给学生足够的空间思考回答问题。

(2)在学生明确正比例函数的性质后,应用新知反馈练习时,可以采取课堂小测验等方法进行,这样教师可以更准确的掌握学生对新知识的掌握情况。

(3)在性质的发现总结过程中,应让学生自己独立完成,教师不必着急帮助总结,这样可以更加集中学生的注意力,激发学习兴趣。

在实际教学中为了体现学生学习的主体性,和教师教学的主导性,我花费了很多时间在学生的动手操作、小组讨论上,但如何能更好的处理好学生探索过程中的引导和讲解,还需要在实际教学中不断地反思才能不断地进步。

小学《正比例》的教学设计 篇5

教材分析:

正比例这个资料是学生在学习了比的好处、比的化简与比的应用等资料的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的好处,决定两个量是否成正比例。教材带给了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的’量;让学生透过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的好处,会决定两个量是否成正比例。

学情分析:

学生在学习乘法时,已经明白一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个资料是有个初步的接触。在这个资料的学习中,学生最容易掌握的是根据表格中的具体数据决定两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述决定两个量是否成正比例,个性是学生对学过的数量关系不熟悉时就更难了。

教学目标:

1、结合丰富的事例,认识正比例,理解正比例的好处,并初步感受生活中存在很多成正比例的量。

2、能根据正比例的好处,决定两个相关联的量是不是成正比例。

教学重点:

1、结合丰富的事例,认识正比例,理解正比例的好处。

2、能根据正比例的好处,决定两个相关联的量是不是成正比例。

教学难点:

能根据正比例的好处,决定两个相关联的量是不是成正比例。

教学用具:

课件

教学过程:

一、在情境中感受两种相关联的量之间的变化规律。

(一)情境一

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(二)情境二

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

(三)情境三

1、观察图,分别把正方形的周长与边长,面积与边长的变化状况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:这两个表格中的变化状况与上两题的变化规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值必须都是4。正方形的面积一边长的比是边长,是一个不确定的值。

(四)归纳正比例的好处

1、时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

2、购买苹果应付的钱数与质量有什么关系?

3、正方形的周长与边长有什么关系?

4、观察思考成正比例的量有什么特征?

一个量变化,另一个量也随着变化,并且这两个量的比值相同。

5、小结

两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)必须,这两种量就是成正比例的量,它们的关系就是正比例关系。

二、巩固练习

1、想一想

正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化状况如下

小明的年龄/岁67891011

爸爸的年龄/岁3233

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再群众汇报

三、全课总结:

说说你在这节课中学到了什么知识?有什么不明白的地方?

板书设计:

正比例

路程÷时间=速度(必须)

总价÷数量=单价(必须)

正方形的周长÷边长=4(必须)

两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)必须,这两种量就成正比例。

小学《正比例》的教学设计 篇6

教学内容:

教科书第62—63页的例1、“试一试”和“练一练”,第66页练习十三的第1—3题。

教学目标:

1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重难点:

理解相关联的两个量及正比例的意义,并能正确判断两种量是否成正比例

学情分析

1.学生在学习本单元之前已经学习了比和比例的有关知识,会解决按比例分配的简单数学问题。

2.有一些朴素的正、反比例概念。学生在中已经积累了一些这方面的经验,比如坐车时间越长,行走的距离就越远等。

多媒体运用:

ppt课件

教学过程:

一、教学例1

1、谈话引出例1的表格,让学生说一说表中列出了哪两种量。

2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:行驶的时间扩大,路程也随着扩大;行驶的时间缩小,路程也随着缩小。

小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。

3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。

学生可能会从不同的角度去寻找规律。

教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

4、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?

根据学生的回答,教师板书关系式:路程时间=速度(一定)

5、教师对两种量之间的关系作具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定,也就是速度一定时,行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

(板书:路程和时间成正比例)

二、教学“试一试”

1、要求学生根据表中的已知条件先把表格填写完整。

2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

三、抽象表达正比例的意义

1、引导学生观察上面的两个例子,说说它们有什么共同点。

2、启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

根据学生的回答,板书关系式。

四、巩固练习

1、完成第63页的“练一练”。

先让学生独立思考并作出判断,再要求说明判断理由。

2、做练习十三第1~3题。

第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

第2题先让学生独立进行判断,再指名说判断的理由。

第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

五、全课小结

这节课你学会了什么?通过这节课的学习,你还有哪些收获?

小学《正比例》的教学设计 篇7

教学目标:

1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,进一步培养观察能力和发现规律的能力。

教学重点:

结合实际情境认识成正比例的量的特点,加深对正比例意义的理解。

教学难点:

能跟据正比例的意义判断两种相关联的量是否成正比例的量。

教学准备:

教学过程:

一、导入

谈话:同学们购物问题中有单价、数量、总价,你知道它们之间的关系吗?

学生讨论,反馈。

[设计意图:本环节结合生活中的实例,引导学生体会数量之间的关系。]

二、教学例1

1、出示例1的表格。

提问:表中列出了哪两种量?(板书:时间和路程)

观察表中的数据,哪一种量的变化引起了另一种量的变化?

指名回答。

谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)

为什么说路程和时间是两种相关联的量?

学生交流。(有的学生可能发现一种量扩大到原来的几倍,另一种量也随着扩大到原来的几倍;有的学生可能会发现一种量缩小到原来的几分之几,另一种量也随着缩小到原来的几分之几。)

2、谈话:观察表中的数据,这两种量在变化中有没有什么不变的规律呢?

学生交流,教师引导:请写出几组对应的路程和时间的比,并求出比值,根据学生回答板书:=80=80=80……

提问:你能用一个式子来表示上面的规律吗?

根据学生回答,板书:=速度(一定)

3、小结:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间成正比例的量。(板书:正比例的意义)

[设计意图:正比例的知识在日常生活中有着广泛的应用。通过学习这部分知识,可以帮助学生加深对学过的数量关系的认识,使学生学会从变量的角度来认识两个量之间的关系,把握正比例概念的内涵和本质。]

三、教学“试一试”

1、出示“试一试”,学生自由读题。

2、让学生根据已知条件把表格填写完整。

3、请学生根据表中数据,先尝试独立完成表格下面的四个问题,再和同桌交流。

4、学生交流中,明确:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。

[设计意图:让学生在认识成正比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。]

四、归纳字母公式

1、比较例题和“试一试”的相同点。

提问:观察上面的两个例子,它们有什么相同的地方呢?

(1)都有两种相关联的量;

(2)两种相关联的量相对应的两个数的比值总是一定的;

(3)两种量都成正比例。

2、如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?

根据学生的回答,板书:=(一定)

交流:和表示两种相关联的量,比的比值一定,我们就说和成正比例。

[设计意图:文似看山,学如登高。结合实例认识成正比例的量的特点,加深对正比例意义的理解。]

五、巩固练习

1、完成第63页“练一练”。

学生独立思考并作出判断,要用完整的语言说出判断的理由。

2、完成练习十三第1题。

(1)让学生按题目要求先各自算一算、想一想。

(2)全班交流,让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。

3、完成练习十三第2题。

(1)让学生独立判断,并指名说说判断的理由。

(2)注意引导学生有条理地说明判断的思考过程。

4、完成练习十三第3题。

(1)先让学生说说题目中将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?

(2)再让学生在书上画出放大后的图形,并算出每个图形的周长和面积,并填在表中。

(3)讨论表格下面的两个问题。通过讨论使学生明确:只有当两种相关联的量的比值一定时,它们才成正比例。

[设计意图:按照新课改的理念,教学中创设开放的问题情境和宽松的学习氛围,给学生充分思考、交流的空间,进一步巩固对正比例意义的理解。]

六、全课总结

这节课你学会了什么?通过这节课的学习,你还有哪些收获?

[设计意图:引导学生进行课堂反思,进一步理解成正比例的量,为后面的学习打基础。]

七、作业

完成《练习与测试》相关作业。

板书设计

正比例的意义

时间和路程路程和时间是两种相关联的量。

=80=80=80……

=速度(一定)

=(一定)

小学《正比例》的教学设计 篇8

【教学内容】

《义教课标实验教科书数学》(人教版)六年级下册第39-41页成正比例的量。

【教学目标】

1、使学生理解正比例的意义,会正确判断成正比例的量。

2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

【教学重点】

正比例的意义。

【教学难点】

正确判断两个量是否成正比例的关系。

【教学准备】

多媒体课件

【自学内容】

见预习作业

【教学预设】

一、自学反馈

1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量

2、通过自学,你能说说什么叫做成正比例的量?

3、你是怎样理解成正比例的量的含义的?

4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的引导下,学生会举出一些简单的例子。

二、关键点拨

1、正比例的意义

(1)出示表格。

高度/㎝24681012

体积/㎝350100150200250300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25平方厘米。

板书:

教师:体积与高度的比值一定。

(2)说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

2、判断正比例关系:下面哪些是成正比例的两个量?

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

三、巩固练习

1、学生独立完成例2后反馈交流。

(1)从图中你发现了什么?

这些点都在同一条直线上。

(2)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

②体积是225㎝3的水,杯里水面高度是多少?

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

(3)你还能提出什么问题?有什么体会?

2、做一做。

过程要求:

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

(2)表中的路程和时间成正比例吗?为什么?

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

3、独立完成第44页练习七第1、2题。

4、判断并说明理由。

(1)圆的周长和直径成正比例。

(2)圆的周长和半径成正比例。

(3)圆的面积和半径成正比例。

四、分享收获畅谈感想

这节课,你有什么收获?听课随想

小学《正比例》的教学设计 篇9

教学内容:

教科书第59页例5以及相关练习题。

教学目标:

1、使学生能正确判断题中涉及的量是否成正比例关系。

2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

4、在成功解决生活中的实际问题中体会数学的价值。

教学重点:

利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

教学难点:

正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

教具准备:

小黑板

教学过程:

一、复习铺垫,激发兴趣。

1、填空并说明理由。

(1)速度一定,路程和时间成( )比例。

(2)单价一定,总价与数量成( )比例。

(3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。

【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

生1:把旗杆放下量。

生2:爬上去量。

生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

师:相信通过这一节课的学习,你一定会找到解决的方法的。

【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

二、揭示课题、探索新知。

1、小黑板出示例5

张大妈:我们家上个月用了8吨水,水费是12.8元。

李奶奶:我们家用了10吨水,上个月的水费是多少钱?

思考:题中告诉了我们哪些信息?要解决什么问题?

师:你能利用数学知识帮李奶奶算出上个月的水费吗?

(1) 学生自己解答。

(2) 交流解答方法,并说说自己想法。

算式是:12.8÷8×10

=1.6×10

=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

(也可以先求出用水量的倍数关系再求总价。)

10÷8×12.8

=1.25×12.8

=16(元)

【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】

师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

(3)小黑板出示以下问题让学生思考和讨论:

1)题目中相关联的两种量是( )和( ) ,说说变化情况。

2)( )一定,( )和( )成( )比例关系。

3)用关系式表示是( )

(4)集体交流、反馈

板书: 水费 用水吨数

12.8元 8吨

?元 10吨

水费:用水吨数 = 每吨水的价钱(一定)

师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(5)根据正比例的意义列出比例式(方程):

学生独立完成,教师巡视。

反馈学生解题情况。

8

12.8

10

χ

解:设李奶奶家上个月的水费是χ元。

12.8 :8 =χ:10 或 =

8χ=12.8×10 8χ= 12.8×10

χ=128÷8 χ=128÷8

χ= 16 χ= 16

答:李奶奶家上个月的水费是16元。

【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】

(6)将答案代入到比例式中进行检验。

你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?

生交流,汇报。

2、变式练习。

刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:

张大妈:我们家上个月用了8吨水,水费是12.8元。王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

(1)比较一下改编后的题和例5有什么联系和区别?

(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

(3)集体订正,学生说一说你是怎么想的?

3、概括总结

师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?

学生讨论交流,汇报。

师总结:

1、分析找出题目中相关联的两种量。

2、判断他们是否是正比例关系。

3、根据正比例的意义列出比例。

4、最后解比例。

5、检验作答。

【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。】

三、巩固练习,形成技能。

1、解决课前提出的问题。小明在解决这一问题时,采集到了下面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗

师提醒:同一时间、同一地点的身高和影长成正比例。

学生读题后,先思考以下三个问题。

① 题中已知哪两种相关联的量?

②它们成什么比例关系?你是根据什么判断的?

② 你能列出等式吗?

生独立完成,并汇报解答过程。

2、教科书P60“做一做”。

生独立解答。

【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】

四、全课总结

通过今天的学习,你有什么收获?

五、布置作业

练习九第3、5题。

小学《正比例》的教学设计的分享到这里就结束了,希望可以帮助到你。

本内容由用户 ijianli 上传分享,若内容存在侵权,请联系我们(点这里联系)处理。如若转载,请注明出处:https://www.lekantv.com/w/28031.html

Like (0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注